ธาตุอีกกลุ่มหนึ่งในตารางธาตุซึ่งมีสมบัติแตกต่างจากธาตุที่เคยศึกษามาแล้ว
กล่าวคือสามารถแผ่รังสีแล้วกลายเป็นอะตอมของธาตุใหม่ได้
การเปลี่ยนแปลงเหล่านี้เกิดขึ้นได้อย่างไร
ในปี ค.ศ. 1896 (พ.ศ.2439) อองตวน
อองรีแบ็กเกอเรล นักวิทยาศาสตร์ชาวฝรั่งเศส
พบว่าเมื่อเก็บแผ่นฟิล์มถ่ายรูปที่หุ้มด้วยกระดาษสีดำไว้กับสารประกอบของยูเรเนียม
ฟิล์มจะมีลักษณะเหมือนถูกแสง และเมื่อทำการทดลองมีสารประกอบของยูเรเนียมชนิดอื่นๆ
ก็ได้ผล เช่นเดียวกัน จึงสรุปว่าน่าจะมีรังสีแผ่ออกมาจากธาตุยูเรเนียม
ต่อมาปีแอร์ และมารี กูรี ได้ค้นพบว่าธาตุพอโลเนียมเรเดียม และทอเรียม ก็สามารถแผ่รังสีได้เช่นเดียวกันปรากฎการณ์ที่ธาตุแผ่รังสีได้เองอย่างต่อเนื่องเช่นนี้เรียกว่า กัมมันตภาพรังสี เป็นการเปลี่ยนแปลงภายในนิวเคลียสของไอโซโทปที่ไม่เสถียร และเรียกธาตุที่มีสมบัติเช่นนี้ว่า ธาตุกัมมันตรังสี ธาตุกัมมันตรังสีส่วนใหญ่มีเลขอะตอมสูงกว่า 83 แต่มีธาตุกัมมันตรังสีบางชนิดที่มีเลขอะตอมน้อยกว่า 83 เช่น 43Ptในธรรมชาติพบธาตุกัมมันตรังสีหลายชนิดเช่น238U 235U 232Th และ222Rn หรืออาจเขียน U-238 U-235 Th-232 และ Rn-222 ก็ได้ นอกจากนี้นักวิทยาศาสตร์ยังสังเคราะห์ธาตุกัมมันตรังสีขึ้นเพื่อใช้ประโยชน์ในด้านต่างๆ ได้อีก
ต่อมาปีแอร์ และมารี กูรี ได้ค้นพบว่าธาตุพอโลเนียมเรเดียม และทอเรียม ก็สามารถแผ่รังสีได้เช่นเดียวกันปรากฎการณ์ที่ธาตุแผ่รังสีได้เองอย่างต่อเนื่องเช่นนี้เรียกว่า กัมมันตภาพรังสี เป็นการเปลี่ยนแปลงภายในนิวเคลียสของไอโซโทปที่ไม่เสถียร และเรียกธาตุที่มีสมบัติเช่นนี้ว่า ธาตุกัมมันตรังสี ธาตุกัมมันตรังสีส่วนใหญ่มีเลขอะตอมสูงกว่า 83 แต่มีธาตุกัมมันตรังสีบางชนิดที่มีเลขอะตอมน้อยกว่า 83 เช่น 43Ptในธรรมชาติพบธาตุกัมมันตรังสีหลายชนิดเช่น238U 235U 232Th และ222Rn หรืออาจเขียน U-238 U-235 Th-232 และ Rn-222 ก็ได้ นอกจากนี้นักวิทยาศาสตร์ยังสังเคราะห์ธาตุกัมมันตรังสีขึ้นเพื่อใช้ประโยชน์ในด้านต่างๆ ได้อีก
1. การเกิดกัมมันตภาพรังสี
กัมมันตภาพรังสีเป็นปรากฎการณ์ทางธรรมชาติของสาร เกิดจากธาตุกัมมันตรังสี เช่น U-238 และ Th-232 แผ่รังสีออกมาตลอดเวลา ทั้งนี้เพราะนิวเคลียสของธาตุกัมมันตรังสีมีพลังงานสูงมากและไม่เสถียร จึงปล่อยพลังงานออกมาในรูปของอนุภาคหรือรังสีบางชนิด แล้วธาตุเหล่านั้นก็จะเปลี่ยนเป็นธาตุใหม่ ต่อมารัทเทอร์ฟอร์ดได้ศึกษาเพิ่มเติมและแสดงให้เห็นว่ารังสีที่แผ่ออกมาจากธาตุกัมมันตรังสีอาจเป็นรังสีแอลฟา บีตาหรือแกมมา ที่มีสมบัติแตกต่างกันดังตาราง 3.11
กัมมันตภาพรังสีเป็นปรากฎการณ์ทางธรรมชาติของสาร เกิดจากธาตุกัมมันตรังสี เช่น U-238 และ Th-232 แผ่รังสีออกมาตลอดเวลา ทั้งนี้เพราะนิวเคลียสของธาตุกัมมันตรังสีมีพลังงานสูงมากและไม่เสถียร จึงปล่อยพลังงานออกมาในรูปของอนุภาคหรือรังสีบางชนิด แล้วธาตุเหล่านั้นก็จะเปลี่ยนเป็นธาตุใหม่ ต่อมารัทเทอร์ฟอร์ดได้ศึกษาเพิ่มเติมและแสดงให้เห็นว่ารังสีที่แผ่ออกมาจากธาตุกัมมันตรังสีอาจเป็นรังสีแอลฟา บีตาหรือแกมมา ที่มีสมบัติแตกต่างกันดังตาราง 3.11
ตาราง 3.11
ชนิดและสมบัติของรังสีบางชนิด
รูป 3.5
ผลของสนามไฟฟ้าต่อรังสีทั้ง 3 ชนิด
2. การสลายตัวของธาตุกัมมันตรังสี
จากการศึกษาไอโซโทปของธาตุจำนวนมากทำให้ได้ข้อสังเกตว่า ไอโซโทปของนิวเคลียสที่มีอัตราส่วนระหว่างจำนวนนิวตรอนต่อจำนวนโปรตอนไม่เหมาะสมคือนิวเคลียสที่มีจำนวนนิวตรอนแตกต่างจากจำนวนโปรตอนมากเกินไปจะไม่เสถียร จึงเกิดการเปลี่ยนแปลงภายในนิวเคลียสแล้วเกิดเป็นนิวเคลียสของธาตุใหม่ที่เสถียรกว่าโดยการแผ่รังสีออกมา ดังตัวอย่างต่อไปนี้
การแผ่รังสีแอลฟา ส่วนใหญ่เกิดกับนิวเคลียสที่มีและอะตอมสูงกว่า 82 และมีจำนวนนิวตรอนต่อโปรตอนในสัดส่วนที่ไม่เหมาะสม เมื่อปล่อยรังสีแอลฟาออกมาจะกลายเป็นนิวเคลียสของธาตุใหม่ที่เสถียรซึ่งมีเลขอะตอมลดลง 2 เลขมวลลดลง 4 ดังตัวอย่าง
จากการศึกษาไอโซโทปของธาตุจำนวนมากทำให้ได้ข้อสังเกตว่า ไอโซโทปของนิวเคลียสที่มีอัตราส่วนระหว่างจำนวนนิวตรอนต่อจำนวนโปรตอนไม่เหมาะสมคือนิวเคลียสที่มีจำนวนนิวตรอนแตกต่างจากจำนวนโปรตอนมากเกินไปจะไม่เสถียร จึงเกิดการเปลี่ยนแปลงภายในนิวเคลียสแล้วเกิดเป็นนิวเคลียสของธาตุใหม่ที่เสถียรกว่าโดยการแผ่รังสีออกมา ดังตัวอย่างต่อไปนี้
การแผ่รังสีแอลฟา ส่วนใหญ่เกิดกับนิวเคลียสที่มีและอะตอมสูงกว่า 82 และมีจำนวนนิวตรอนต่อโปรตอนในสัดส่วนที่ไม่เหมาะสม เมื่อปล่อยรังสีแอลฟาออกมาจะกลายเป็นนิวเคลียสของธาตุใหม่ที่เสถียรซึ่งมีเลขอะตอมลดลง 2 เลขมวลลดลง 4 ดังตัวอย่าง
การแผ่รังสีบีตา เกิดกับนิวเคลียสที่มีจำนวนนิวตรอนมากกว่าโปรตอน
นิวตรอนในนิวเคลียสจะเปลี่ยนไปเป็นโปรตอนและอิเล็กตรอน
เมื่อปล่อยรังสีบีตาออกมานิวเคลียสใหม่จะมีเลขอะตอมเพิ่มขึ้น 1 เลขมวลยังคงเดิมดังตัวอย่าง
การแผ่รังสีแกมมา เกิดกับไอโซโทปกัมมันตรังสีที่มีพลังงานสูงมาก
หรือไอโซโทปที่สลายตัวให้รังสีแอลฟาหรือบีตา
แต่นิวเคลียสที่เกิดใหม่ยังไม่เสถียรเพราะมีพลังงานสูงจึงเกิดการเปลี่ยนแปลงในนิวเคลียสเพื่อให้มีพลังงานต่ำลงโดยปล่อยพลังงานส่วนเกินออกมาเป็นรังสีแกมมาดังตัวอย่าง
นิวเคลียสของไอโซโทปกัมมันตรังสีสามารถสลายตัวและแผ่รังสีได้ตลอดเวลาโดยไม่ขึ้นกับอุณหภูมิหรือความดัน การสลายตัวและแผ่รังสีของไอโซโทปกัมมันตรังสีจะเป็นสัดส่วนโดยตรงกับจำนวนอนุภาคในนิวเคลียสกัมมันตรังสีนั้น นักเรียนคิดว่าธาตุกัมมันตรังสีต่างชนิดกันจะมีอัตราการสลายตัวแตกต่างกันหรือไม่ วัดปริมาณการสลายตัวได้อย่างไร
นิวเคลียสของไอโซโทปกัมมันตรังสีสามารถสลายตัวและแผ่รังสีได้ตลอดเวลาโดยไม่ขึ้นกับอุณหภูมิหรือความดัน การสลายตัวและแผ่รังสีของไอโซโทปกัมมันตรังสีจะเป็นสัดส่วนโดยตรงกับจำนวนอนุภาคในนิวเคลียสกัมมันตรังสีนั้น นักเรียนคิดว่าธาตุกัมมันตรังสีต่างชนิดกันจะมีอัตราการสลายตัวแตกต่างกันหรือไม่ วัดปริมาณการสลายตัวได้อย่างไร
3. ครึ่งชีวิตของธาตุกัมมันตรังสี
ธาตุกัมมันตรังสีจะสลายตัวให้รังสีชนิดใดชนิดหนึ่งออมาได้เองตลอดเวลา ธาตุกัมมันตรังสีแต่ละชนิดจะสลายตัวได้เร็วหรือช้าแตกต่างกัน ปริมาณการสลายตัวของธาตุกัมมันตรังสีจะบอกเป็น ครึ่งชีวิต ใช้สัญลักษณ์ t 1/2ครึ่งชีวิต หมายถึง ระยะเวลาที่นิวเคลียสของธาตุกัมมันตรังสี สลายตัวจนเหลือครึ่งหนึ่งของปริมาณเดิม ไอโซโทปกัมมันตรังสีของธาตุชนิดหนึ่งๆ จะมีครึ่งชีวิตคงเดิมไม่ว่าจะอยู่ในรูปของธาตุหรือเกิดเป็นสารประกอบ เช่น Na-24 มีครึ่งชีวิต 15 ชั่วโมง หมายความว่าถ้าเริ่มต้นมี Na-24 10 กรัม นิวเคลียสนี้จะสลายตัวให้รังสีออกมาจนกระทั่งเวลาผ่านไปครบ 15 ชั่วโมง จะมี Na-24 เหลือ 5 กรัม และเมื่อเวลาผ่านไปอีก 15 ชั่วโมงจะมี Na-24 เหลืออยู่ 2.5 กรัม นั้นคือเวลาผ่านไปทุกๆ 15 ชั่วโมง Na-24 จะสลายตัวไปเหลือเพียงครึ่งหนึ่งของปริมาณเดิมเขียนแสดงได้ดังรูป 3.6
ธาตุกัมมันตรังสีจะสลายตัวให้รังสีชนิดใดชนิดหนึ่งออมาได้เองตลอดเวลา ธาตุกัมมันตรังสีแต่ละชนิดจะสลายตัวได้เร็วหรือช้าแตกต่างกัน ปริมาณการสลายตัวของธาตุกัมมันตรังสีจะบอกเป็น ครึ่งชีวิต ใช้สัญลักษณ์ t 1/2ครึ่งชีวิต หมายถึง ระยะเวลาที่นิวเคลียสของธาตุกัมมันตรังสี สลายตัวจนเหลือครึ่งหนึ่งของปริมาณเดิม ไอโซโทปกัมมันตรังสีของธาตุชนิดหนึ่งๆ จะมีครึ่งชีวิตคงเดิมไม่ว่าจะอยู่ในรูปของธาตุหรือเกิดเป็นสารประกอบ เช่น Na-24 มีครึ่งชีวิต 15 ชั่วโมง หมายความว่าถ้าเริ่มต้นมี Na-24 10 กรัม นิวเคลียสนี้จะสลายตัวให้รังสีออกมาจนกระทั่งเวลาผ่านไปครบ 15 ชั่วโมง จะมี Na-24 เหลือ 5 กรัม และเมื่อเวลาผ่านไปอีก 15 ชั่วโมงจะมี Na-24 เหลืออยู่ 2.5 กรัม นั้นคือเวลาผ่านไปทุกๆ 15 ชั่วโมง Na-24 จะสลายตัวไปเหลือเพียงครึ่งหนึ่งของปริมาณเดิมเขียนแสดงได้ดังรูป 3.6
รูป 3.6
แสดงปริมาณของ Na-24 ที่ลดลงครึ่งหนึ่งทุกๆ 15
ชั่วโมง
ครึ่งชีวิตเป็นสมบัติเฉพาะตัวของแต่ละไอโซโทปและสามารถใช้เปรียบเทียบอัตราการสลายตัวของธาตุกัมมันตรังสีแต่ละชนิดได้
ตัวอย่างครึ่งชีวิตของไอโซโทปกัมมันตรังสีบางชนิด แสดงดังตาราง 3.12
ตาราง 3.12
ตัวอย่างครึ่งชีวิตของไอโซโทปกัมมันตรังสีบางชนิด
ตัวอย่าง 1 จงหาปริมาณของ Tc-99 ที่เหลือเมื่อวาง Tc-99 จำนวน 10 กรัมไว้นาน 24 ชั่วโมง
และ Tc-99 มีครึ่งชิวิต 6 ชั่วโมง
Tc-99 มีครึ่งชีวิต 6 ชั่วโมง เมื่อวาง Tc-99 ไว้นาน 24 ชั่วโมงจึงเท่ากับวางไว้นาน 4 ครึ่งชีวิต ถ้ามี Tc-99 จำนวน 10 g ปริมาณ Tc-99 ที่เหลือในแต่ละครึ่งชีวิตจะเป็นดังนี้
แสดงว่าเมื่อเวลาผ่านไป 24 ชั่วโมงจะมี Tc-99 เหลืออยู่ 0.625 กรัม
ตัวอย่าง 2 จงหาปริมาณ I-131 เริ่มต้น เมื่อนำ I-131 จำนวนหนึ่งมาวางไว้เป็นเวลา 40.5 วัน ปรากฎว่ามีมวลเหลือ 0.125 กรัม ครึ่งชีวิตของ I-131 เท่ากับ 8.1 วัน
สมมติ I-131 เริ่มต้นมี a กรัม
I-131 จำนวน a กรัมวางไว้ 40.5 = 5 ครึ่งชีวิต
ครึ่งชีวิตสุดท้าย I-131 ที่เหลือมีมวล = 0.125 กรัม
Tc-99 มีครึ่งชีวิต 6 ชั่วโมง เมื่อวาง Tc-99 ไว้นาน 24 ชั่วโมงจึงเท่ากับวางไว้นาน 4 ครึ่งชีวิต ถ้ามี Tc-99 จำนวน 10 g ปริมาณ Tc-99 ที่เหลือในแต่ละครึ่งชีวิตจะเป็นดังนี้
แสดงว่าเมื่อเวลาผ่านไป 24 ชั่วโมงจะมี Tc-99 เหลืออยู่ 0.625 กรัม
ตัวอย่าง 2 จงหาปริมาณ I-131 เริ่มต้น เมื่อนำ I-131 จำนวนหนึ่งมาวางไว้เป็นเวลา 40.5 วัน ปรากฎว่ามีมวลเหลือ 0.125 กรัม ครึ่งชีวิตของ I-131 เท่ากับ 8.1 วัน
สมมติ I-131 เริ่มต้นมี a กรัม
I-131 จำนวน a กรัมวางไว้ 40.5 = 5 ครึ่งชีวิต
ครึ่งชีวิตสุดท้าย I-131 ที่เหลือมีมวล = 0.125 กรัม
4. ปฏิกิริยานิวเคลียร์
ปฏิกิริยาเคมีที่ได้ศึกษามาแล้ว เป็นการเปลี่ยนแปลงที่เกิดขึ้นกับเวเลนซ์อิเล็กตรอนของธาตุที่ทำปฏิกิริยากันทำให้เกิดเป็นสารใหม่ที่มีสมบัติแตกต่างไปจากเดิมและมีพลังงานเกี่ยวข้องไม่มาก ส่วนปฏิกิริยานิวเคลียร์เป็นการเปลี่ยนแปลงในนิวเคลียสของธาตุ อาจเกิดจากการแตกตัวของนิวเคลียสของอะตอมที่มีขนาดใหญ่หรือเกิดจากการรวมตัวของนิวเคลียสของอะตอมที่มีขนาดเล็ก จะได้ไอโซโทปใหม่หรือนิวเคลียสของธาตุใหม่ รวมทั้งมีพลังงานเกี่ยวข้องกับปฏิกิริยาเป็นจำนวนมหาศาล ซึ่งสามารถนำมาใช้ประโยชน์ได้ ตัวอย่างปฏิกิริยานิวเคลียร์ศึกษาได้ดังนี้
ปฏิกิริยาฟิชชันและปฏิกิริยาฟิวชัน
ในปี พ.ศ. 2482 นักวิทยาศาสตร์ได้ค้นพบว่าเมื่อยิงอนุภาคนิวตรอนไปยังนิวเคลียสของ U-235 นิวเคลียสจะแตกออกเป็นนิวเคลียสของธาตุที่เบากว่าดังตัวอย่าง เช่น
ปฏิกิริยาเคมีที่ได้ศึกษามาแล้ว เป็นการเปลี่ยนแปลงที่เกิดขึ้นกับเวเลนซ์อิเล็กตรอนของธาตุที่ทำปฏิกิริยากันทำให้เกิดเป็นสารใหม่ที่มีสมบัติแตกต่างไปจากเดิมและมีพลังงานเกี่ยวข้องไม่มาก ส่วนปฏิกิริยานิวเคลียร์เป็นการเปลี่ยนแปลงในนิวเคลียสของธาตุ อาจเกิดจากการแตกตัวของนิวเคลียสของอะตอมที่มีขนาดใหญ่หรือเกิดจากการรวมตัวของนิวเคลียสของอะตอมที่มีขนาดเล็ก จะได้ไอโซโทปใหม่หรือนิวเคลียสของธาตุใหม่ รวมทั้งมีพลังงานเกี่ยวข้องกับปฏิกิริยาเป็นจำนวนมหาศาล ซึ่งสามารถนำมาใช้ประโยชน์ได้ ตัวอย่างปฏิกิริยานิวเคลียร์ศึกษาได้ดังนี้
ปฏิกิริยาฟิชชันและปฏิกิริยาฟิวชัน
ในปี พ.ศ. 2482 นักวิทยาศาสตร์ได้ค้นพบว่าเมื่อยิงอนุภาคนิวตรอนไปยังนิวเคลียสของ U-235 นิวเคลียสจะแตกออกเป็นนิวเคลียสของธาตุที่เบากว่าดังตัวอย่าง เช่น
กระบวนการที่นิวเคลียสของธาตุหนักบางชนิดแตกออกเป็นไอโซโทปของธาตุที่เบากว่าดังตัวอย่างที่กล่าวมาแล้วเรียกว่า ปฏิกิริยาฟิชชัน
(fission reaction) ธาตุอื่นที่สามารถเกิดปฏิกิริยาฟิชชันได้
เช่น U-238 หรือ Pu-239 การเกิดปฏิกิริยาฟิชชันแต่ละครั้งจะคายพลังงานออกมาจำนวนมากและได้ไอโซโทปกัมมันตรังสีหลายชนิด
จึงถือได้ว่าปฏิกิริยาฟิชชันเป็นวิธีผลิตไอโซโทปกัมมันตรังสีที่สำคัญ
นอกจากนี้ปฏิกิริยาฟิชชันยังได้นิวตรอนเกิดขึ้นด้วยถ้านิวตรอนที่เกิดขึ้นใหม่นี้ชนกับนิวเคลียสอื่นๆ
จะเกิดปฏิกิริยาฟิชชันต่อเนื่องไปเรื่อยๆ เรียกปฏิกิริยานี้ว่า ปฏิกิริยาลูกโซ่
(chain reaction) ดังรูป 3.7
รูป 3.7
แสดงปฏิกิริยาฟิชชันแบบลูกโซ่
ปฏิกิริยาฟิชชันที่เกิดขึ้นภายใต้ภาวะที่เหมาะสมจะได้จำนวนนิวตรอนเพิ่มขึ้นอย่างรวดเร็ว
ทำให้ปฏิกิริยาฟิชชันดำเนินไปอย่างรวดเร็วและปล่อยพลังงานออกมาจำนวนมหาศาล ถ้าไม่สามารถควบคุมปฏิกิริยาได้อาจเกิดการระเบิดอย่างรุนแรง
หลักการของการเกิดปฏิกิริยาลูกโซ่เช่นนี้ได้นำมาใช้ในการทำระเบิดปรมาณู
การควบคุมปฏิกิริยาฟิชชันทำได้หลายวิธี เช่น
ควบคุมมวลของสารตั้งต้นให้น้อยลงจนนิวตรอนที่เกิดขึ้นไม่เพียงพอที่จะทำให้เกิดปฏิกิริยาลูกโซ่ได้
หรือใช้โลหะแคตเมียมและโบรอนจับนิวตรอนบางส่วนไว้เพื่อลดจำนวนนิวตรอนที่เกิดขึ้นหรือใช้แท่งแกรไฟต์หรือน้ำเพื่อทำให้นิวตรอนเคลื่อนที่ช้าลงปัจจุบันนักวิทยาศาสตร์นำปฏิกิริยาฟิชชันมาใช้ประโยชน์อย่างกว้างขวาง
เช่น ใช้ผลิตไอโซโทปกัมมันตรังสีในเตาปฎิกรณ์ปรมาณูเพื่อใช้ในการเกษตร
การแพทย์และอุตสาหกรรม ใช้ผลิตกระแสไฟฟ้าในโรงไฟฟ้าปรมาณู
ในกรณีที่นิวเคลียสของธาตุเบาสองชนิดหลอมรวมกันเกิดเป็นนิวเคลียสใหม่ที่มีมวลสูงกว่าเดิมและให้พลังงานปริมาณมาก
ในกรณีที่นิวเคลียสของธาตุเบาสองชนิดหลอมรวมกันเกิดเป็นนิวเคลียสใหม่ที่มีมวลสูงกว่าเดิมและให้พลังงานปริมาณมาก
กระบวนการนี้เรียกว่า ปฏิกิริยาฟิวชัน
(fusion reaction) ปฏิกิริยาทั้งสองนี้เป็นปฏิกิริยาเดียวกับที่เกิดขึ้นบนดวงอาทิตย์ซึ่งเป็นแหล่งพลังงานที่สำคัญของสุริยจักรวาลการเกิดปฏิกิริยาฟิวชันจะต้องใช้พลังงานเริ่มต้นสูงมากเพื่อเอาชนะแรงผลักระหว่างนิวเคลียสที่จะเข้ารวมกันซึ่งประมาณกันว่าจะต้องมีอุณหภูมิถึง
2
x 108 0C ความร้อนหรือพลังงานจำนวนนี้อาจได้จากปฏิกิริยาฟิชชันซึ่งเปรียบเสมือนเป็นปฏิกิริยาชนวนที่ทำให้เกิดปฏิกิริยาฟิวชัน
ถ้าพลังงานนิวเคลียร์ที่ปล่อยออกมาจากปฏิกิริยาฟิวชันเกิดขึ้นอย่างรวดเร็วจะเกิดการระเบิดอย่างรุนแรงแต่ถ้าควบคุมให้มีการปล่อยพลังงานออกมาอย่างช้าๆ
และต่อเนื่องกัน
จะให้พลังงานมหาศาลที่เป็นประโยชน์ต่อมนุษย์ปฏิกิริยาฟิวชันมีข้อได้เปรียบกว่าปฏิกิริยาฟิชชันหลายประการกล่าวคือ
คายพลังงานออกมามาก สารตั้งต้นของปฏิกิริยาฟิวชันหาได้ง่ายและมีปริมาณมาก
นอกจากนี้ผลิตภัณฑ์ที่เกิดจากปฏิกิริยาฟิวชันเป็นธาตุกัมมันตรังสีที่มีครึ่งชีวิตสั้นและมีอันตรายน้อยกว่าผลิตภัณฑ์จากปฏิกิริยาฟิชชัน
5. การตรวจสอบสารกัมมันตรังสีและเทคโนโลยีที่เกี่ยวข้องกับการใช้สารกัมมันตรังสี
รังสีทำให้โมเลกุลของสารแตกตัวเป็นไอออนได้เป็นผลให้เกิดการเปลี่ยนแปลงที่เซลล์ของสิ่งมีชีวิต มนุษย์ไม่สามารถมองเห็นรังสีได้ด้วยตาเปล่าจึงต้องมีการตรวจสอบรังสีด้วยวิธีต่างๆ เช่น การใช้ฟิล์มถ่ายรูปหุ้มสารนั้น และเก็บไว้ในที่มืด ถ้าฟิล์มที่ล้างแล้วปรากฎสีดำแสดงว่าสารนั้นมีการแผ่รังสีหรือนำสารที่ต้องการตรวจสอบเข้าใกล้สารเรืองแสง ถ้าเกิดการเรืองแสงขึ้นแสดงว่าสารนั้นมีธาตุกัมมันตรังสีอยู่ แต่การตรวจสอบโดยวิธีที่กล่าวมาแล้วไม่สามารถบอกปริมาณของรังสีได้ ถ้าต้องการทราบปริมาณรังสีต้องใช้เครื่องไกเกอร์ มูลเลอร์ เคาน์เตอร์ ซึ่งประกอบด้วยหัววัดรังสีและมิเตอร์ที่มีหน้าปัดบอกปริมาณรังสี ดังรูป 3.8
5. การตรวจสอบสารกัมมันตรังสีและเทคโนโลยีที่เกี่ยวข้องกับการใช้สารกัมมันตรังสี
รังสีทำให้โมเลกุลของสารแตกตัวเป็นไอออนได้เป็นผลให้เกิดการเปลี่ยนแปลงที่เซลล์ของสิ่งมีชีวิต มนุษย์ไม่สามารถมองเห็นรังสีได้ด้วยตาเปล่าจึงต้องมีการตรวจสอบรังสีด้วยวิธีต่างๆ เช่น การใช้ฟิล์มถ่ายรูปหุ้มสารนั้น และเก็บไว้ในที่มืด ถ้าฟิล์มที่ล้างแล้วปรากฎสีดำแสดงว่าสารนั้นมีการแผ่รังสีหรือนำสารที่ต้องการตรวจสอบเข้าใกล้สารเรืองแสง ถ้าเกิดการเรืองแสงขึ้นแสดงว่าสารนั้นมีธาตุกัมมันตรังสีอยู่ แต่การตรวจสอบโดยวิธีที่กล่าวมาแล้วไม่สามารถบอกปริมาณของรังสีได้ ถ้าต้องการทราบปริมาณรังสีต้องใช้เครื่องไกเกอร์ มูลเลอร์ เคาน์เตอร์ ซึ่งประกอบด้วยหัววัดรังสีและมิเตอร์ที่มีหน้าปัดบอกปริมาณรังสี ดังรูป 3.8
รูป 3.8
เครื่องไกเกอร์ มูลเลอร์ เคาน์เตอร์
การทำงานของท่อวัดในเครื่องไกเกอร์ มูลเลอร์ เคาน์เตอร์
อธิบายได้ว่าเมื่อรังสีผ่านเข้าทางช่องรับรังสีจะชนกับอะตอมของแก๊สอาร์กอนที่บรรจุอยู่ในกระบอก
ทำให้อิเล็กตรอนหลุดจากอะตอมเกิดเป็น Ar+จึงเกิดความต่างศักย์ระหว่างประจุบวก (Ar+)กับประจุลลบ (อิเล็กตรอน) ของขั้วไฟฟ้าในหัววัดรังสี
ซึ่งอ่านค่าความต่างศักย์ได้จากเข็มบนหน้าปัด
ค่าที่อ่านได้จะมากหรือน้อยขึ้นอยู่กับปริมาณของรังสีที่จะทำให้ Ar กลายเป็น Ar+
สารกัมมันตรังสีแต่ละสารมีครึ่งชีวิตไม่เท่ากันและแผ่รังสีได้แตกต่างกัน การนำสารกัมมันตรังสีมาใช้ประโยชน์จึงแตกต่างกัน
ด้านธรณีวิทยา ใช้คาร์บอน -14 ซึ่งมีครึ่งชีวิต 5730 ปี หาอายุของวัตถุโบราณที่มีคาร์บอนเป็นองค์ประกอบ เช่น ไม้ กระดูก หรือสารอินทรีย์อื่นๆ การหาอายุวัตถุโบราณโดยการวัดปริมาณของคาร์บอน -14 อธิบายได้ว่าในบรรยากาศมีคาร์บอน -14 ซึ่งเกิดจากไนโตรเจนรวมตัวกับนิวตรอนจากรังสีคอสมิก
สารกัมมันตรังสีแต่ละสารมีครึ่งชีวิตไม่เท่ากันและแผ่รังสีได้แตกต่างกัน การนำสารกัมมันตรังสีมาใช้ประโยชน์จึงแตกต่างกัน
ด้านธรณีวิทยา ใช้คาร์บอน -14 ซึ่งมีครึ่งชีวิต 5730 ปี หาอายุของวัตถุโบราณที่มีคาร์บอนเป็นองค์ประกอบ เช่น ไม้ กระดูก หรือสารอินทรีย์อื่นๆ การหาอายุวัตถุโบราณโดยการวัดปริมาณของคาร์บอน -14 อธิบายได้ว่าในบรรยากาศมีคาร์บอน -14 ซึ่งเกิดจากไนโตรเจนรวมตัวกับนิวตรอนจากรังสีคอสมิก
ในอากาศจึงมีคาร์บอนในรูปของคาร์บอน
-12 และ คาร์บอน -14 เมื่อคาร์บอนทำปฏิกิริยากับออกซิเจนในอากาศเกิดเป็น
จึงพบแก๊สคาร์บอนไดออกไซด์ในอากาศในรูปของ
ปนอยู่กับ
ซึ่งพืชจะนำไปใช้ในกระบวนการสังเคราะห์ด้วยแสง
เมื่อสัตว์กินพืชเหล่านั้นเป็นอาหารคาร์บอน -14 จะเข้าสู่ร่างกายของสัตว์ทำให้พบคาร์บอน
-14 ได้ทั้งในพืชและสัตว์ ขณะที่พืชหรือสัตว์ยังมีชีวิตอยู่
จะถูกรับเข้าและขับออกตลอดเวลา เป็นผลให้คาร์บอน -14
ในสิ่งมีชีวิตมีความเข้มข้นคงที่หรือกล่าวว่าสัดส่วนระหว่างคาร์บอน
-12 ต่อคาร์บอน -14 มีค่าคงที่
เมื่อสิ่งมีชีวิตตายการรับคาร์บอน -14 เข้าสู่ร่างกายจะสิ้นสุดลง
แต่การสลายตัวยังเกิดขึ้นต่อไป จึงทำให้มีปริมาณคาร์บอน -14 หรือสัดส่วนระหว่างคาร์บอน
-14 ต่อคาร์บอน -12 ลดลงเรื่อยๆ
ดังนั้นถ้าทราบอัตราการสลายตัวของคาร์บอน -14 ในขณะที่ยังมีชีวิตอยู่และวัดอัตราการสลายตัวของคาร์บอน
-14 ในขณะที่นำมาศึกษาได้ก็สามารถทำนายอายุได้ เช่น
สมมติว่าพบซากไม้โบราณชิ้นหนึ่งมีอัตราการสลายตัวของคาร์บอน -14 ลดลงไปครึ่งจากของเดิมขณะที่ยังมีชีวิตอยู่ก็อาจสรุปได้ว่าไม้ชิ้นนั้นตายมาแล้วเท่ากับครึ่งชีวิตของคาร์บอน
-14 หรือมีอายุประมาณ 5730 ปี
ด้านการแพทย์ ใช้เพื่อศึกษาความผิดปกติของอวัยวะต่างๆ ในร่างกาย โดยให้คนไข้รับประทานอาหารหรือยาที่มีไอโซโทปกัมมันตรังสีจำนวนเล็กน้อย จากนั้นใช้เครื่องมือตรวจสอบรังสีเพื่อติดตามดูผลการดูดซึมไอโซโทปกัมมันตรังสีของระบบอวัยวะต่างๆ เช่น ให้ดื่มสารละลายไอโอดีน -131 แล้วติดตามดูความผิดปกติของต่อมไทรอยด์ใช้ไอโอดีน -132 ติดตามดูภาพสมอง ฉีดโซเดียม -24 เข้าเส้นเลือดโดยตรงเพื่อดูระบบการไหลเวียนของเลือดรับประทานเทคนีเชียม-99 เมื่อต้องการดูภาพหัวใจ ตับ ปอด นอกจากนี้แพทย์ยังใช้ไอโซโทปกัมมันตรังสีรักษาโรคโดยตรง เช่น ใช้โคบอลต์ -60 หรือเรเดียม -226 ในการรักษาโรคมะเร็ง
ด้านเกษตรกรรม ใช้ไอโซโทปกัมมันตรังสีในการติดตามระยะเวลาของการหมุนเวียนแร่ธาตุในพืช โดยเริ่มต้นจากการดูดซึมที่รากจนถึงการคายออกที่ใบหรือจำนวนแร่ธาตุที่พืชสะสมไว้ที่ใบ เช่น ใช้ฟอสฟอรัส -32 จำนวนเล็กน้อยผสมกับฟอสฟอรัสที่ไม่มีรังสีเพื่อทำปุ๋ย แล้วใช้เครื่องไกเกอร์ มูลเลอร์ เคาน์เตอร์ ตรวจวัดรังสีที่ใบของพืชใช้รังสีเพื่อการปรับปรุงเมล็ดพันธุ์พืชให้ได้พันธุกรรมตามต้องการโดยการนำเมล็ดพันธุ์พืชมาอาบรังสีนิวตรอนในปริมาณและระยะเวลาที่เหมาะสมจะทำให้เกิดการกลายพันธุ์ได้
ด้านอุตสาหกรรม ใช้ไอโซโทปกัมมันตรังสีกับงานหลายอย่าง เช่น ใช้ตรวจหารอยตำหนิในโลหะหรือรอยรั่วของท่อขนส่งของเหลวโดยผสมไอโซโทปกัมมันตรังสีกับของเหลวที่จะขนส่งไปตามท่อ แล้วติดตามการแผ่รังสีด้วยเครื่องไกเกอร์ มูลเลอร์ เคาน์เตอร์ ถ้าบริเวณใดที่เครื่องมีสัญญาณจำนวนนับมากที่สุดแสดงว่าบริเวณนั้นมีการรั่วไหลเกิดขึ้น ใช้วัดความหนาของวัตถุเนื่องจากรังสีแต่ละชนิดทะลุวัตถุได้ดีไม่เท่ากัน ดังนั้นเมื่อผ่านรังสีไปยังแผ่นวัตถุต่างๆ เช่น โลหะ กระดาษ พลาสติก แล้ววัดความสามารถในการดูดซับรังสีของวัตถุนั้นด้วยเครื่องไกเกอร์ มูลเลอร์ เคาน์เตอร์ เปรียบเทียบจำนวนนับกับตารางข้อมูลก็จะทำให้ทราบความหนาของวัตถุได้
ในอุตสาหกรรมการทำอัญมณีใช้รังสีเพื่อทำให้อัญมณีมีสีสันสวยงามขึ้น
โดยใช้รังสีแกมมา นิวตรอน หรือ อิเล็กตรอนพลังงานสูงฉายไปบนอัญมณี
จะทำให้สารที่ทำให้เกิดสีบนอัญมณีเปลี่ยนสีไปได้
อัญมณีที่ฉายด้วยรังสีแกมมาจะไม่มีรังสีตกค้างแต่การอาบด้วยรังสีนิวตรอนจะมีไอโซโทปกัมมันตรังสีเกิดขึ้น
จึงต้องปล่อยให้ไอโซโทปกัมมัมตรังสีสลายตัวจนมีระดับรังสีที่ปลอดภัยจึงนำมาใช้ประโยชน์
การเก็บถนอมอาหาร ใช้โคบอลต์ -60 ซึ่งจะให้รังสีแกมมาที่ไม่มีผลตกค้างและรังสีจะทำลายแบคทีเรียจึงช่วยเก็บรักษาอาหารไว้ได้นานหลายวันหลังจากการผ่านรังสีเข้าไปในอาหารแล้ว
จะเห็นได้ว่าธาตุกัมมันตรังสีให้ประโยชน์ต่อมนุษย์อย่างมาก แต่ถ้าใช้ในปริมาณไม่ถูกต้องหรือนำไปใช้ในสภาพไม่เหมาะสมก็จะมีผลต่อสิ่งมีชีวิตและสิ่งแวดล้อมได้
การเก็บถนอมอาหาร ใช้โคบอลต์ -60 ซึ่งจะให้รังสีแกมมาที่ไม่มีผลตกค้างและรังสีจะทำลายแบคทีเรียจึงช่วยเก็บรักษาอาหารไว้ได้นานหลายวันหลังจากการผ่านรังสีเข้าไปในอาหารแล้ว
จะเห็นได้ว่าธาตุกัมมันตรังสีให้ประโยชน์ต่อมนุษย์อย่างมาก แต่ถ้าใช้ในปริมาณไม่ถูกต้องหรือนำไปใช้ในสภาพไม่เหมาะสมก็จะมีผลต่อสิ่งมีชีวิตและสิ่งแวดล้อมได้
ไม่มีความคิดเห็น:
แสดงความคิดเห็น